Metalation and Methyl Iodide Reaction of Dispiroindanyl Ether **7.** To 0.090 g (0.448 mmol) of **7** in **6** mL of *dry* EgO cooled to 0 OC was added **1.44** mmol of s-BuLi **(1.2** mL, **1.2** M). The reaction mixture was allowed to wann to room temperature, stirred for **24** h, and then quenched by addition of excess **(0.4** mL) CH31. Standard workup provided a pale yellow oil, which was shown by GC to contain **90%** of one new product and **10%** starting material. After being passed through a short silica flash column, the product was isolated by HPLC **(2%** EtOAc/hexane) to provide **0.075** g **(0.350** mmol, **78%)** of anti-2-methyldispiro[cyclo**propane-l,l'-indan-3',1''-cyclopropan]-2'-yl** methyl ether **(12) as** a clear oil: 'H NMR (CDC13) **6 0.86-0.96** (m, **3** H), **1.16-1.26** (m, 2 H), 1.39 $(d, J = 6.22$ Hz, $CH₃$), overlapping with multiplet at **1.36-1.42** (total, **4** H), **1.70-1.79** (m, **1** H), **3.17 (s, 3** H, OCH,), **3.77** (s, **1** H, OCH), **6.63-6.67** (m, **2** H), **7.07-7.10** (m, **2** H); 13C NMR $δ$ 9.4, 16.2, 18.8, 20.1, 27.9, 29.6, 32.2, 52.2, 91.4, 117.1, 126.1, **126.2, 146.7;** IR (neat, cm-') **3067, 2930, 2824, 1607, 1485, 1462,** 1196, 1086. Anal. Calcd for C₁₅H₁₈O: C, 84.07; H, 8.47. Found: C, **84.15;** H, **8.42.**

Representative Metalation and Methyl Iodide Reaction of **6.** To **0.103** g **(0.426** mmol) of 9 in **6** mL of **EhO** cooled to 0 OC was added **3.64** mmol of s-BuLi **(2.6** mL, **1.4 M).** The ice bath was removed, and the reaction mixture was stirred at room temperature for **20 h;** then excess (0.5 mL) methyl iodide was added and the reaction mixture was stirred for **15** h. Standard workup yielded a yellow oil, which was purified by passage through a short silica column, followed by HPLC *(5%* EtOAc/hexane) to yield **0.0242** g of **2'-butyl-anti-2-methyldispiro[cyclopropane-1,1' indan-3',1"-cyclopropan]-syn-2'-01 (8) (0.0945** mmol, **22%)** as a clear oil and **0.0541** g **(0.200** mmol, **47%)** of 2'-butyl-anti-2,2'' dimethyldispiro [cyclopropane-1,1'-indan-3',1"-cyclopropan]syn-2'-01 (9) as a clear oil. 8: 'H NMR (CDC13) 6 **0.70-0.79** (m, $CHCH₃$) overlapping with multiplet at 1.0–1.6 (total = 16 H), **6.56-6.63** (m, **2** H, aromatic H), **7.07-7.10** (m, **2** H, aromatic H); ¹³C NMR (CDCl₃) δ 13.9, 15.0, 15.9, 22.3, 23.4, 25.2, 26.9, 36.1, **37.4,39.4,82.2,117.3,117.6, 126.1,126.4,145.5, 147.3.** Anal. Calcd for C18Ha0 C, **84.33;** H, **9.44.** Found C, **84.17;** H, **9.49.** 9: lH (m, **11** H), **1.44** (d, J ⁼**6.3** Hz, **6** H, CHCH,), **1.55-1.60** (m, **2** H), **6.40-6.52** (m, **2** H), **7.02-7.05** (m, **2** H); 13C NMR (CDC1,) 6 **14.0, 16.3,23.4, 23.8,25.5,27.4,37.8,40.7,85.8, 117.3,126.1, 146.7. Anal.** Calcd for C19Hz60: C, **84.39;** H, **9.69.** Found: C, **84.36;** H, **9.65. 1 H**), 0.846 (t, $J = 7$ **Hz**, 3 **H**, CH₂CH₃), 1.47 (d, $J = 6.3$ Hz, 3 H, NMR (CDCl₃) δ 0.841 (t, J = 6.7 Hz, 3 H, CH₂CH₃), 1.08-1.30

Lithiation of 1 and Addition of 19-Li Followed by Reaction with Methyl Iodide. To **0.0467** g **(0.251** mmol) of 1 in **2** mL of dry Et_oO cooled to 0 °C was added 1.56 mmol of s-BuLi (1.2 mL, **1.3** M, **6** equiv.). The ice bath was removed, and the reaction mixture was stirred at room temperature for **24** h, and then cooled to **-78 "C.**

To 0.0308 g (0.153 mmol) of 19 in 2 mL of dry Et₂O cooled to 0 OC was added **0.156** mmol of s-BuLi **(0.12** mL, **1.3** M, **1.0** equiv). The ice bath was removed, and the solution was stirred for **30** min and then cooled to -78 °C. This solution was transferred by cannula to the lithiation reaction above. After \sim 1 min, 0.5 mL of CH31 was added, and the reaction mixture was slowly allowed to warm to room temperature and stirred for **15** h. Standard workup provided a yellow solid, which contained 1:2:3 in a ratio of **2.5:6.9:1** as shown by capillary GC. FIMS analysis relative to an undeuterated standard showed that the dimethyl product 3 had a deuterium incorporation of **9%,**

Lithiation of **6** and Addition of 1-Li Followed by Reaction **with Methyl** Iodide. To **0.0681** g (0.281 mmol) of **6** in **4** mL of dry **EhO** cooled to 0 "C was added **1.70** mmol of s-BuLi **(1.3** mL, **1.3** M, **6** equiv). The ice bath was removed, and the reaction mixture was stirred at room temperature for **24** h and then cooled to **-78** "C.

To **0.0308** g **(0.153** mmol) of 1 in **2** mL of dry EtzO cooled to 0 **"C** was added **0.182** mmol of s-BuLi **(0.14** mL, **1.3** M, **1.1** equiv). The ice bath was removed, and the solution was stirred for **30** min and then cooled to **-78** "C. This solution was transferred by cannula to the lithiation reaction above. After \sim 30–45 s, 1 mL of a mixture of acetic acid-d and methanol-d (50% v/v) was added, and the reaction mixture was slowly allowed to warm to room temperature and stirred for *5* h. Standard workup provided a yellow solid. FIMS analysis relative to undeuterated standards showed that there was no deuterium **(<3%)** incorporation in 1,

while the *n*-butyl compound 6 was shown to be 48% d_2 and 28% d_1 .

Acknowledgment. We are grateful to the National Science Foundation and the National Institutes of Health for support of this work, to Dr. S. Wilson for assistance with the X-ray structure determination, and to Professor G. Boche and Professor G. W. Klumpp for helpful discussions. We also thank Lithium Corporation of America for a generous gift of s-BuLi.

Supplementary Material Available: **ORTEP** plots of 3 with selected distances, angles, and thermal parameters and experimental procedures for the synthesis of 19 and the lithiation and methanol-d trapping of **7 (12** pages). Ordering information is given on any current masthead page.

Assignment of the Configuration of Disubstituted l,j-Dienes by Nuclear Overhauser Effect Measurements

Charles W. Jefford*

Department of Organic Chemistry, University of Geneva, *1211* Geneva *4;* Switzerland

Ying Wang and K. N. Houk*

Department of Chemistry and Biochemistry, University of California, Los Angeles, California *90024*

Received December 10, 1988

As a rule, the geometry of simple substituted olefins can be safely predicted from the coupling constants and chemical shifts of their ¹H and ¹³C NMR spectra.^{1,2} However, when several substituents are present, prediction becomes uncertain since the chemical shift differences are usually smaller and the number of informative couplings is reduced. 3 Conjugated dienes are subject to the same limitations, although chemical evidence, such as Diels-Alder additions and experiments involving 1,5-hydride shifts, should permit their structures to be deduced. 4.5 However, these methods, where feasible,^{2b} need to be carried out on both the *E* and 2 isomers in order to minimize ambiguity. We now describe how nuclear Overhauser effect (NOE) difference spectroscopy⁶ can be used in a

(6) For some related applications, see: (a) Kotovych, **G.;** Aarta, G. H. M.; Bock, **K.** Can. *J. Chem.* **1980,58, 1206.** (b) Keller, T. H.; Neeland, E. G.; Weiler, L. *J. Org. Chem.* **1987,52,1870** and references cited therein.

^{(1) (}a) Martin, G.-J.; Lavielle, G.; Dorie, J.-P.; Sturtz, G.; Martin, M.-L.
C. R. Seances Acad. Sci., Ser. C 1969, 268, 1004. (b) Makin, S. M.; Petrovskii, P. V.; Yablonovskaya, S. D.; Bogatkov, S. V.; Ismail, A. A. Zh.
P W. B.; McKay, S. W.; Morgan, S. E.; Rackham, D. M.; Roes, W. J.; Shrubsall, P. R. *Tetrahedron Lett.* **1980,21,4123** and references cited therein. (e) Chisholm, M. D.; Steck, W. F.; Bailey, B. K.; Underhill, E.
W. J. Chem. Ecol. 1981, 7, 159. (f) Kurth, M. J.; O'Brien, M. J.; Hope,
H.; Yanuck, M. J. Org. Chem. 1985, 50, 2626. (g) Cuvigny, T.; Penhoat,
C. H.

⁽d) Ando, T.; Kusa, K.; Uchiyama, M.; Yoshida, S.; Takahashi, N. *Agric. Biol. Chem.* **1983,47, 2849.**

⁽³⁾ Pascual, C.; Meier, J.; Simon, W. *Helu. Chim.* Acta **1969,48,164. (4)** (a) Frey, H. M.; Solly, R. K. *Trans. Faraday SOC.* **1969,6448.** (b) Curry, M. J.; Stevens, I. D. R. J. *Chem. SOC., Perkin Trans I* **1980,1391** and references cited therein.

and reierences cited therein.
(5) (a) Jones, G. D.; Teffertiller, N. B.; Raley, C. F.; Runyon, J. R. J.
Org. Chem. 1968, 33, 2946. (b) Carter, M. J.; Fleming, I.; Percival, A. J.
Chem. Soc., Perkin Trans. 1 1981, 2415.

Table I. Correlations of NOE Enhancements with the Geometry and Conformation of Some Dienes

		signals		
	protons	enhanced		
diene"	irradiated	(9 _b) ^b	geometry	conformation
1	OSiMe ₂	$C1-H(10)$	E	s-cis
	t -Bu	$C1-H(15)$		
2	OSiMe ₃	$C1-H(10)$	z	s-cis
	t -Bu	$C3-H(15)$		
3	OSiMe.	$C2-H(16)$	E	s-trans
	t-Bu	$C3-H(18)$		
4	OSiMe ₃	$C3-H(21)$	z	s-trans
	t-Bu	$C2-H(23)$		
5	OMe	$C2 - H(23)$	E	c
	t -Bu	d		
6	OMe	d	z	C
	t-Bu	$C2-H(16)$		
7	Me	$C3-H(19)$	E	s-trans
8	Me	$C2-H(9)$	Z	s-trans
9	Me	$C3-H(14)$	E	s-trans
10	Me	$C2-H(8)$	Z	s-trans
11	Me	$C3-H(17)$	E	s-trans
12	Me	$C2-H(16)$	z	s-trans
13	Me	$C3-H(12)$	E	s-trans
14	Me	$C3-H(11)$	Z	s-trans

"Benzene-dg used as solvent throughout, except for **11** and **12,** which were dissolved in D₂O containing 15% NaOD. ^bPairs of noncontiguous protons gave enhancements of not more than \sim 3%. $'$ Indeterminate. d No enhancement.

simple, straightforward fashion to elucidate the configurations and preferred conformations of some disubstituted 1,3-butadienes. By way of illustration, seven pairs of dienes having the E and Z configurations respectively $(1-14)$ were examined (Table I).

Irradiation of the protons of either the trimethylsiloxy or tert-butyl group in **1** enhanced the C1-H signal, thereby demonstrating the *E* configuration for the Cl-C2 double bond. The additional enhancement of the C3-H signal observed on irradiation of the tert-butyl group indicates that the s-trans conformation is avoided owing to the spatial demands of the tert-butyl group. In complementary fashion, the C1-H signal intensity in **2** was increased by irradiation of the trimethylsiloxy group, but remained unaffected by irradiation of the tert-butyl group, which nevertheless magnified the C3-H signal. This result establishes the 2 geometry of the C1-C2 bond and reveals that **2** like 1 prefers to avoid the congestion encountered in the s-trans conformation. In both **1** and **2,** the preferred ground-state structure could be a fully planar or an outof-plane s-cis conformation.

When the tert-butyl group is placed on the diene terminus, its bulk clearly dictates the rotational freedom about the C2-C3 bond. Separate irradiations of the geminal substituents at C1 in **3** and **4** markedly influenced the respective contiguous protons to each substituent, permitting the unambiguous assignment of the *E* and *Z* configurations, respectively. These enhancements **also** reflect the dominance of planar or near-planar s-trans conformations.

When the trimethylsiloxy group in **3** and **4** is replaced by the methoxy group to give **5** and **6,** a subtle conformational difference is revealed by **NOE.** Irradiation of the methoxy group of **5** and the tert-butyl group of **6** augmented the signal of the cis proton at the C2 position in each case, thereby securing their respective \vec{E} and \vec{Z} geometries. On the other hand, irradiation of the tert-butyl and methoxy groups in **5** and **6,** respectively, had no influence whatsoever on the C3-H signal, thereby showing that the planar s-trans conformation is not populated. This conformational finding may be a reflection of the different steric requirements of the methoxy and trimethylsiloxy groups. Evidently, less coplanarity obtains in **5** and **6** than in **3** and 4, favoring nonetheless a transoid arrangement overall.

Lastly, the less sterically crowded dienes **7-14** were examined and found to display a regular spectral pattern. Irradiation of the methyl resonances intensified alternately the C3-H and C2-H signals, identifying unequivocally the corresponding *E* and 2 configurations and confirming at the same time that **all** olefins prefer s-trans conformations.

For most of the aforementioned dienes, the **NOE** experiment is not only the most convenient method but the only sure way of determining configuration. This is particularly true for dienes 1-8. 1,5-Hydrogen shifts are excluded for dienes **1-6,** while **7** and **8** failed to rearrange even when heated to $310 °C$.⁷ Moreover, the assignment of configuration of *E* and *2* silyl enol ethers on the basis of their ¹³C NMR spectra, a recommended procedure,⁸ is not always unambiguous.^{2c,9} A pertinent exception is provided by dienes **3** and **4.** An incorrect structural assignment would have been deduced from a consideration of the I3C NMR spectra, because the 13C chemical shift of the quaternary atom of the tert-butyl group (37.83 ppm) in the *E* isomer **(3)** should be upfield from that of the 2 isomer (4, 36.51 ppm) according to Heathcock's rule.^{2a}

In conclusion, the present results amply confirm that NOE offers a convenient and unambiguous means for

⁽⁷⁾ Wentrup, C.; Crow, W. D. Tetrahedron 1971, 27, 361.
(8) Kalinowski, H.-O.; Berger, S.; Braun, S. Carbon-13 NMR Spectroscopy; John Wiley & Sons Ltd.: Chichester, 1988; Chapter 3 and references cited therein.

⁽⁹⁾ Brouwer, H.; Stothers, J. B. *Can.* J. *Chem.* **1972,** *50,* 1361. Odi-nokov, V. N.; Bakeeva, R. S.; Gleeva, R. **I.;** Akhunova, V. R.; Mukhtarov, Y. G.; Tolstikov, G. A.; Khalilov, L. M.; Panasenko, A. A. *Zh. Org. Khim.* **1979,** *15,* 2017.

assigning configuration and conformation in molecules characterized by the 1,3-diene entity. $10,11$

Experimental Section

Materials. Dienes **1-6** were prepared by the thermolysis of cyclobutenes.12

Dienes **7** and 8 are **known** compounds,' but they were prepared **as** follows: thermolysis of **3-methyl-3-cyanocyclobutene** afforded 8. The dehydration of **4-cyano-3-hydroxypent-l-ene,** which was obtained from the condensation of acrolein with ethyl cyanide, gave mainly **7,** contaminated with 8. The treatment of diene 8 with iodine in benzene at room temperature gave an equilibrium mixture of **7** and 8. Both dienes had 60-MHz NMR spectra identical with those reported.⁷ 7: NMR $(360 \text{ MHz}, \text{C}_6\text{D}_6)$ δ 6.12 $(dd, J = 1, 11 Hz, 1 H$), 5.87 (m, small couplings and $J = 11, 16.5$ Hz, **1** H), **4.93** (d, *J* = **11** Hz, **1** H), **4.84** (d, *J* = **16.5** Hz, **1** H), **1.21 (s,3** H). *8: NMR* **(360** *MHz,* 06) **6 6.63** (m, small couplings and *J* = **11, 17** Hz, **1** H), **5.73** (d, *J* = **11** Hz, **1** H), **4.90** (d, *J* = **17** Hz, **1** H), **4.89** (d, *J* = 11 Hz, **1** H), **1.25** (s, **3** H).

Diene 9 is already known.¹³ However, it was conveniently prepared as a single isomer by hydrolysis of the ethyl ester¹⁴ obtained by condensation of acrolein with ethyl propionate followed by dehydration of the resulting hydroxy ester. The *2* isomer, diene **10,** was produced by the thermal electrocyclic reaction of **1-methylcyclobut-2-enecarboxylic** acid. It is unstable and isomerizes quantitatively to the more stable isomer **9** under acidic conditions. **9:** NMR (360 MHz, C_6D_6) δ 7.34 (dd, $J = 1$, **11.5** Hz, **1** H), **6.26** (m, small couplings and *J* = **10, 11.5, 17** Hz, *⁶***7.56** (m, small couplings and *J* = **11, 17** Hz, **1** H), **6.13** (dd, *J* = **1, 11** Hz, **1** H), **5.09** (m, **2** H), **1.76** (s, **3** H). **1** H), **5.09** (m, **2** H), **1.73** (5, **3** H). **10** NMR **(360** MHz, C&)

The sodium dienecarboxytate **11** was obtained by dissolving **9** in NaOD solution. Sodium carboxylate **12** was prepared by the thermolysis of sodium 1-methylcyclobut-2-enecarboxylate in D₂O. When the isomerization of **10** to **9** was interrupted with base, a mixture of **11** and **12** was formed. No isomerization of these two **salts** was observed. **11:** NMR **(360** MHz, **15%** NaOD/D,O, HDO, *⁶***4.67,** as standard) *6* **6.24** (d, *J* = **11** Hz, **1** H), **6.13** (m small couplings and $J = 10, 11, 16$ Hz, 1 H), 4.94 (d, $J = 16$ Hz, 1 H), **4.82** (d, *J* = **10** Hz, **1** H), **1.30 (s,3** H). **12** NMR **(360** MHz, **15%** NaOD/D20, HDO, *b* **4.67, as** standard) *6* **6.01** (m, small couplings and *J* = **11, 17** Hz, **1** H), **5.38** (d, *J* = **11** Hz, **1** H), **4.53** (d, *J* = **11** Hz, **1** H), **1.32 (s,3** H), one proton signal was hidden by the solvent peak.

Diene **13** is known15 but was readily obtained by acid-catalyzed isomerization of its Z isomer 14. Similarly, the latter is known,^{13a} and was prepared, in the present instance, by heating methyl **1-methylcyclobut-2-enecarboxylate** in benzene. **13:** NMR **(360** MHz, C_6D_6) δ 7.30 (d, $J = 11$ Hz, 1 H), 6.35 (m, small couplings and $\hat{J} = 10$, 11, 17 Hz, 1 H), 5.17 (d, $\hat{J} = 17$ Hz, 1 H), 5.05 (d, $\hat{J} = 10$ Hz, 1 H), 3.40 (s, 3 H), 1.82 (s, 3 H). 14: NMR (360 MHz, Hz, **1** H), **5.12** (d, *J* = **11.5** Hz, **1** H), **3.33** (s, **3** H), **1.80** (s, **3** H). C_6D_6) δ 7.71 (m, 1 H), 6.13 (d, $J = 11$ Hz, 1 H), 5.13 (d, $J = 15$

Procedure for NOE Difference Spectroscopy. Samples where prepared by dissolving the diene in deuterated benzene or in deuterium oxide containing NaOD in an NMR tube. Degassing to remove oxygen was effected by passing a stream of dry, pure N_2 through the solution for 5 min. Tubes were sealed and examined. The irradiation of protons on substituents invariably caused an NOE enhancement of the signal of the contiguous proton by some **8-23%** (Table I).

All the spectra were recorded at **360 MHz** on a Bruker **AM** 360 or WM **360** spectrometer. Depending on the sample, the decoupler power **(DP)** was selected in the range **22-33** L. The relaxation time was $4-5$ times greater than the longest T_1 of the diene. The % NOES was calculated by using the irradiated inverted peaks as the reference. Error limits were ***2%.**

Acknowledgment. We are grateful to Dr. M. Geckle and Mr. A. Pinto for assistance with the NMR measurements and the US. and Swiss National Science Foundations for financial support of this research.

Synthesis of 3H-Pyrrolo[1,2-c **]imidazole-3,5(2H)-diones**

Kenneth J. Shaw* and Margaret Vartanian

Department of Medicinal Chemistry, Berlex Laboratories, Inc., 110 East Hanover Avenue, Cedar Knolls, New Jersey 07927

Received April IO, 1990

During the course of a program aimed toward the development of nitrogen acylated prodrugs' of cardiotonic agent $1²$ it was noted that acylation by certain anhydrides produced unexpected fluorescent byproducts. These fluorescent compounds were determined to be *3H*pyrrolo[**1,2-c]imidazole-3,5(2H)-diones, 2.** This hetero-

cyclic system has not been previously reported. 3 Several of the pyrrolo[1,2-c]imidazoledione derivatives derived from compounds such **as** 1 displayed cardiotonic properties similar to the parent **[4-(1H-imidazol-l-yl)benzoyl]-** The synthesis and activities of these analogues will be reported elsewhere. This paper describes a synthetic study of the novel system **2** by the reaction of imidazolones 3 with anhydrides **4** (Scheme I). A ringopening reaction in which pyrrolo[1,2-c]imidazoledione **2d** is treated with aqueous NaOH is also reported.

Imidazolone 3a was prepared in an 87% yield by Friedel-Crafts reaction of 5-ethyl-2-oxoimidazole-4-carboxylic acid with $CH₃CO₂H$ in a manner similar to the reported synthesis of compound 3b.5 Reactions of 3 with **4** using excess NaH at 0-65 "C in DMF afforded varying mixtures of **2** and *5* (Scheme I). The intermediate N-acylated derivatives *5* could be isolated, or the crude reaction mixtures completely deacylated with $NaOCH₃$ in MeOH to afford

⁽¹⁰⁾ To the authors' knowledge, no such use has been reported so far (cf.: Neuhaus, D.; Williamson, M. The Nuclear *Overhauser* **Effect** *in* **Structural and Conformational Analysis; Verlag Chemie: Weinheim, 1989).**

⁽¹¹⁾ For a recent application to aldoximes and ketoximes, see: Heinish, G.; Holzer, W. Tetrahedron Lett. 1990, 31, 3109.
 \ldots (12) Houk, K. N.; Spellmeyer, D. C.; Jefford, C. W.; Rimbault, C. G.;

Wang, Y.; Miller, R. D. *J.* **Og. Chem. 1988, 53, 2125. Jefford, C. W.; Wang, Y.; Houk, K. N., unpublished work.**

⁽b) Bond, F. T.; Ho, C.-Y. *J. Org.* **Chem. 1976, 41, 1421. (13) (a) House, H. 0.; Rasmusson, G. H.** *J. Org.* **Chem. 1961,26,4278.**

⁽¹⁴⁾ Piers, E.; Jung, G. L.; Ruediger, E. H. Can. *J.* **Chem. 1987,65,670. (15) Belletire, J. L.; Walley, D. R. Tetrahedron Lett. 1983,24, 1475.**

⁽¹⁾ Detailed results will be published elsewhere. For a preliminary review of the chemistry and biology, see: Erhardt, P. W.; Hagedorn, A. A., 111. U.S. Patent 4,743,612, 1988.

⁽²⁾ Hagedorn, A. A., III; Erhardt, P. W.; Lumma, W. C., Jr.; Wohl, R.
A.; Cantor, E.; Chou, Y.-L.; Ingebretsen, W. R.; Lampe, J. W.; Pang, D.;
Pease, C. A.; Wiggins, J. *J. Med. Chem.* 1987, *30*, 1342.

⁽³⁾ The saturated 1H-pyrrolo[1,2-c]imidazole-3,5-dione ring system has been reported: Butler, D. E.; Leonard, J. D. U.S. Patent 4,582,838, 1986. For a general review of pyrrolo[1,2-c]imidazole derivatives, see:
Preston, P. N. Condensed Imidazoles, 5-5 Ring Systems. In *The Chem-
istry of Heterocyclic Compounds*; Wiley: New York, 1986; p 42.

W. R.; Pang, D. Cantor, E. J. Med. Chem. 1989, 32, 1173.